圓州率
🌐

Feature Image

變成 6

數學, 奇怪的東西
把數字湊成6。

加上一些符號,讓下列的式子成立

000=6111=6222=6333=6444=6555=6666=6777=6888=6999=6 0 \quad 0 \quad 0 = 6 \\ 1 \quad 1 \quad 1 = 6 \\ 2 \quad 2 \quad 2 = 6 \\ 3 \quad 3 \quad 3 = 6 \\ 4 \quad 4 \quad 4 = 6 \\ 5 \quad 5 \quad 5 = 6 \\ 6 \quad 6 \quad 6 = 6 \\ 7 \quad 7 \quad 7 = 6 \\ 8 \quad 8 \quad 8 = 6 \\ 9 \quad 9 \quad 9 = 6

例如

2+2+2=63×33=6 2 + 2 + 2 = 6 \\ 3 \times 3 - 3 = 6

參考解答

(0!+0!+0!)!=6(1+1+1)!=62+2+2=63×33=64+4×4=65+(5÷5)=66+66=67(7÷7)=688+8=6(9+9)÷9=6 \begin{align*} (0! + 0! + 0! ) ! & = 6 \\ (1 + 1 + 1) ! & = 6 \\ 2 + 2 + 2 & = 6 \\ 3 \times 3 - 3 & = 6 \\ 4 + \sqrt{\sqrt{4 \times 4}} & = 6 \\ 5 + (5 \div 5) & = 6 \\ 6 + 6 - 6 & = 6 \\ 7 - (7 \div 7) & = 6 \\ 8 - \sqrt{\sqrt{8 + 8}} & = 6 \\ (9 + 9) \div \sqrt{9} & = 6 \end{align*}

這邊一共用了++, -, ×\times, ÷\div, !!, ()(), \sqrt{} 共7種操作,能不能只用到5種操作?

(0!+0!+0!)!=6(1+1+1)!=6(2+2+2)!=6(3+3+3)!=6(4+4+4)!=6(5+5+5)!=6(6+6+6)!=6(7+7+7)!=6(8+8+8)!=6(9+9+9)!=6 \begin{align*} (0! + 0! + 0!)! & = 6 \\ (1 + 1 + 1)! & = 6 \\ \left( \lfloor \sqrt{2} \rfloor + \lfloor \sqrt{2} \rfloor + \lfloor \sqrt{2} \rfloor \right)! & = 6 \\ \left( \lfloor \sqrt{3} \rfloor + \lfloor \sqrt{3} \rfloor + \lfloor \sqrt{3} \rfloor \right)! & = 6 \\ \left( \left\lfloor \sqrt{\sqrt{4}} \right\rfloor + \left\lfloor \sqrt{\sqrt{4}} \right\rfloor + \left\lfloor \sqrt{\sqrt{4}} \right\rfloor \right)! & = 6 \\ \left( \left\lfloor \sqrt{\sqrt{5}} \right\rfloor + \left\lfloor \sqrt{\sqrt{5}} \right\rfloor + \left\lfloor \sqrt{\sqrt{5}} \right\rfloor \right)! & = 6 \\ \left( \left\lfloor \sqrt{\sqrt{6}} \right\rfloor + \left\lfloor \sqrt{\sqrt{6}} \right\rfloor + \left\lfloor \sqrt{\sqrt{6}} \right\rfloor \right)! & = 6 \\ \left( \left\lfloor \sqrt{\sqrt{7}} \right\rfloor + \left\lfloor \sqrt{\sqrt{7}} \right\rfloor + \left\lfloor \sqrt{\sqrt{7}} \right\rfloor \right)! & = 6 \\ \left( \left\lfloor \sqrt{\sqrt{8}} \right\rfloor + \left\lfloor \sqrt{\sqrt{8}} \right\rfloor + \left\lfloor \sqrt{\sqrt{8}} \right\rfloor \right)! & = 6 \\ \left( \left\lfloor \sqrt{\sqrt{9}} \right\rfloor + \left\lfloor \sqrt{\sqrt{9}} \right\rfloor + \left\lfloor \sqrt{\sqrt{9}} \right\rfloor \right)! & = 6 \end{align*}

或甚至更簡潔的操作

(0!+0!+0!)!=6((ddx1)!+(ddx1)!+(ddx1)!)!=6((ddx2)!+(ddx2)!+(ddx2)!)!=6((ddx3)!+(ddx3)!+(ddx3)!)!=6((ddx4)!+(ddx4)!+(ddx4)!)!=6((ddx5)!+(ddx5)!+(ddx5)!)!=6((ddx6)!+(ddx6)!+(ddx6)!)!=6((ddx7)!+(ddx7)!+(ddx7)!)!=6((ddx8)!+(ddx8)!+(ddx8)!)!=6((ddx9)!+(ddx9)!+(ddx9)!)!=6 \begin{align*} (0! + 0! + 0!)! & = 6 \\ \left( \left( \frac{d}{dx} 1 \right) ! + \left( \frac{d}{dx} 1 \right) ! + \left( \frac{d}{dx} 1 \right) ! \right) ! & = 6 \\ \left( \left( \frac{d}{dx} 2 \right) ! + \left( \frac{d}{dx} 2 \right) ! + \left( \frac{d}{dx} 2 \right) ! \right) ! & = 6 \\ \left( \left( \frac{d}{dx} 3 \right) ! + \left( \frac{d}{dx} 3 \right) ! + \left( \frac{d}{dx} 3 \right) ! \right) ! & = 6 \\ \left( \left( \frac{d}{dx} 4 \right) ! + \left( \frac{d}{dx} 4 \right) ! + \left( \frac{d}{dx} 4 \right) ! \right) ! & = 6 \\ \left( \left( \frac{d}{dx} 5 \right) ! + \left( \frac{d}{dx} 5 \right) ! + \left( \frac{d}{dx} 5 \right) ! \right) ! & = 6 \\ \left( \left( \frac{d}{dx} 6 \right) ! + \left( \frac{d}{dx} 6 \right) ! + \left( \frac{d}{dx} 6 \right) ! \right) ! & = 6 \\ \left( \left( \frac{d}{dx} 7 \right) ! + \left( \frac{d}{dx} 7 \right) ! + \left( \frac{d}{dx} 7 \right) ! \right) ! & = 6 \\ \left( \left( \frac{d}{dx} 8 \right) ! + \left( \frac{d}{dx} 8 \right) ! + \left( \frac{d}{dx} 8 \right) ! \right) ! & = 6 \\ \left( \left( \frac{d}{dx} 9 \right) ! + \left( \frac{d}{dx} 9 \right) ! + \left( \frac{d}{dx} 9 \right) ! \right) ! & = 6 \end{align*}